85 research outputs found

    Learning to Grasp 3D Objects using Deep Residual U-Nets

    Get PDF
    Grasp synthesis is one of the challenging tasks for any robot object manipulation task. In this paper, we present a new deep learning-based grasp synthesis approach for 3D objects. In particular, we propose an end-to-end 3D Convolutional Neural Network to predict the objects’ graspable areas. We named our approach Res-U-Net since the architecture of the network is designed based on U-Net structure and residual network-styled blocks. It devised to plan 6-DOF grasps for any desired object, be efficient to compute and use, and be robust against varying point cloud density and Gaussian noise. We have performed extensive experiments to assess the performance of the proposed approach concerning graspable part detection, grasp success rate, and robustness to varying point cloud density and Gaussian noise. Experiments validate the promising performance of the proposed architecture in all aspects. A video showing the performance of our approach in the simulation environment can be found at http://youtu.be/5_yAJCc8owo<br/

    The State of Lifelong Learning in Service Robots: Current Bottlenecks in Object Perception and Manipulation

    Get PDF
    Service robots are appearing more and more in our daily life. The development of service robots combines multiple fields of research, from object perception to object manipulation. The state-of-the-art continues to improve to make a proper coupling between object perception and manipulation. This coupling is necessary for service robots not only to perform various tasks in a reasonable amount of time but also to continually adapt to new environments and safely interact with non-expert human users. Nowadays, robots are able to recognize various objects, and quickly plan a collision-free trajectory to grasp a target object in predefined settings. Besides, in most of the cases, there is a reliance on large amounts of training data. Therefore, the knowledge of such robots is fixed after the training phase, and any changes in the environment require complicated, time-consuming, and expensive robot re-programming by human experts. Therefore, these approaches are still too rigid for real-life applications in unstructured environments, where a significant portion of the environment is unknown and cannot be directly sensed or controlled. In such environments, no matter how extensive the training data used for batch learning, a robot will always face new objects. Therefore, apart from batch learning, the robot should be able to continually learn about new object categories and grasp affordances from very few training examples on-site. Moreover, apart from robot self-learning, non-expert users could interactively guide the process of experience acquisition by teaching new concepts, or by correcting insufficient or erroneous concepts. In this way, the robot will constantly learn how to help humans in everyday tasks by gaining more and more experiences without the need for re-programming

    Deep Learning for Action and Gesture Recognition in Image Sequences: A Survey

    Get PDF
    Interest in automatic action and gesture recognition has grown considerably in the last few years. This is due in part to the large number of application domains for this type of technology. As in many other computer vision areas, deep learning based methods have quickly become a reference methodology for obtaining state-of-the-art performance in both tasks. This chapter is a survey of current deep learning based methodologies for action and gesture recognition in sequences of images. The survey reviews both fundamental and cutting edge methodologies reported in the last few years. We introduce a taxonomy that summarizes important aspects of deep learning for approaching both tasks. Details of the proposed architectures, fusion strategies, main datasets, and competitions are reviewed. Also, we summarize and discuss the main works proposed so far with particular interest on how they treat the temporal dimension of data, their highlighting features, and opportunities and challenges for future research. To the best of our knowledge this is the first survey in the topic. We foresee this survey will become a reference in this ever dynamic field of research
    • …
    corecore